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Abstract

A stable computational scheme for the conical function Pµ
−1/2+iτ (x)

for x > −1, real τ , and µ ≤ 0 or µ ∈ N, is presented. The scheme com-
bines uniform asymptotic expansions for large |µ| with the application
of the three-term recurrence relation on the µ index in the direction of
decreasing |µ| when x > 0. When x < 0 the conditioning of recursion
is the opposite and conical functions can be computed in the direction
of increasing |µ|.
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1 Introduction

Conical functions appear in a large number of applications in engineering,
applied physics [12] [11], quantum physics (related to the amplitude for
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Yukawa potential scattering [3]) or cosmology [13], among others. Also,
they are the kernel of the Mehler-Fock transform, which has numerous ap-
plications.

It appears that the only existing algorithm for conical functions is given
by Kölbig [8], who computed the functions P 0

−1/2+iτ (x) and P 1
−1/2+iτ (x),

x > −1 (see also [11]). In applications, however, in general one encounters
values Pµ

−1/2+iτ (x), where µ = m are integer numbers. We are providing
a computational method for these parameter values, which uses uniform
asymptotics for large |m| combined with recurrence relations and numerical
quadrature.

2 Basic definitions

The associated Legendre function P−µ
ν (x) for real x > −1 (ν = −1/2 +

iτ for the case of conical functions) can be written in terms of the Gauss
hypergeometric function as follows

P−µ
ν (x) =

1

Γ(µ+ 1)

∣

∣

∣

∣

1 − x

1 + x

∣

∣

∣

∣

µ/2

2F1

(

−ν, ν + 1
µ+ 1

; 1
2
− 1

2
x

)

. (2.1)

We adopt this definition for x > −1; this is the definition used in appli-
cations (both for −1 < x < 1 and x > 1). The absolute value in the previous
formula is showing that in fact we are dealing with two different functions in
the complex plane (though trivially related). The functions defined in such
a way satisfy the associated Legendre differential equation

(1 − x2)y′′(x) − 2xy′(x) +
(

ν(ν + 1) − µ2/(1 − z2)
)

y(x) = 0 . (2.2)

We can use this definition for real x > −1 except when µ ∈ Z
−, because

for these values of µ the hypergeometric function in (2.1) is not defined.
However, the reciprocal gamma function makes the right-hand side of (2.1)
regular when µ ∈ Z

−. For x ∈ (−1, 1) this also follows from the relation

Pµν (x) =
Γ(µ− ν)Γ(µ+ ν + 1)

π

[

sin(πµ)P−µ
ν (−x) − sin(πν)P−µ

ν (x)
]

,

(2.3)
and we see that, when m ∈ Z,

Pmν (x) = −Γ(m− ν)Γ(m+ ν + 1)

π
sin(πν)P−m

ν (x). (2.4)
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This relation also holds for x > 1 [1, Eq. 8.2.5].
From these representations of the Legendre function, it is clear that when

ν = −1/2 + iτ , τ ∈ R, the function Pµν (x) (µ ∈ R) remains real valued, as
also does the defining differential equation and the rest of relations. For
example, Eq. (2.4) reads:

Pm
− 1

2
+iτ

(x) = cosh(πτ)
|Γ(m + 1/2 + iτ)|2

π
P−m
− 1

2
+iτ

(x). (2.5)

We will use greek letters (µ) for denoting real values of the order and
latin letters (m) for integer orders, expect otherwise specified.

3 Recurrence relation and continued fraction

Three-term recurrence relations are useful methods of computation when
two starting values are available for starting the recursive process. Usually,
the direction of application of the recursion can not be chosen arbitrarily,
and the conditioning of the computation of a given solution fixes the di-
rection. More explicitly, when the wanted function is recessive in a given
recursion direction, one should use the opposite direction of recursion. As
we discuss next, the recursion for conical functions admits recessive (also
called minimal) solution, which indeed fixes the direction of stable recur-
sion. First we study the case x ∈ (−1, 1) and later the case x > 1 (the case
x = 1 is trivial, and no minimal solution exists). The main tool is Perron’s
theorem [6, 15].

Conical functions Pµ
−1/2+iτ (x) satisfy the following three-term recurrence

relation when x ∈ (−1, 1):

Pµ+1

− 1
2
+iτ

(x) +
2µx

√

1 − x2
Pµ
− 1

2
+iτ

(x) −
(

(µ− 1
2
)2 + τ2

)

Pµ−1

− 1
2
+iτ

(x) = 0 . (3.1)

We start by studying the conditioning of recursion as µ→ −∞; for this,
we write yµ(x) = P−µ

−1/2+iτ (x). Then we have

yµ+1(x) + bµ(x)yµ(x) + aµ(x)yµ−1(x) = 0 , (3.2)

and the behavior of the coefficients as µ→ +∞ is

bµ(x) ∼ bµ−1, aµ(x) ∼ aµ−2,

b = 2x/
√

1 − x2, a = −1.

(3.3)
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The application of Perron’s theorem shows that the recurrence admits a
minimal solution as µ → +∞. The recurrence admits solutions with the
asymptotic behavior

fµ+1

fµ
∼ t1µ

−1,
gµ+1

gµ
∼ t2µ

−1, (3.4)

where ti are the roots of the characteristic equation t2 + bt+ a = 0, namely

t1 =

√

1 − x

1 + x
, t2 = −

√

1 + x

1 − x
. (3.5)

The minimal solution is the one corresponding with the smallest |ti| (t1 for
x > 0 and t2 for x < 0).

Next, we prove that yµ(x) = P−µ
−1/2+iτ (x) is minimal as µ → +∞ when

0 < x < 1 and dominant when −1 < x < 0. On the other hand, it is easy
to check that the recurrence does not have minimal or dominant solutions
when x = 0.

Indeed, from Eq. (2.1) we have

yµ+1

yµ
∼ 1

µ

√

1 − x

1 + x

2F1

(

−ν, ν + 1
µ+ 2

; 1
2
− 1

2
x

)

2F1

(

−ν, ν + 1
µ+ 1

; 1
2
− 1

2
x

) . (3.6)

But, taking into account the asymptotic behavior of the Gauss (0 0+)
recurrence [7], we have

yµ+1(x)

yµ(x)
∼ 1

µ

√

1 − x

1 + x
. (3.7)

This shows that yµ(x) is minimal as µ → +∞ in (0, 1) and dominant in
(−1, 0). Therefore, backward recursion for the computation of yµ(x) from
large positive values of µ is well-conditioned for x ∈ (0, 1), but only forward
recursion (increasing µ) can be used for x ∈ (−1, 0).

For x > 1 the situation is very similar to the case 0 < x < 1. In this
case, we have the recurrence relation

Pµ+1

− 1
2
+iτ

(x) +
2µx

√

x2 − 1
Pµ
− 1

2
+iτ

(x) +
(

(µ− 1
2
)2 + τ2

)

Pµ−1

− 1
2
+iτ

(x) = 0 , (3.8)
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and proceeding as before we see that yµ(x) = P−µ
−1/2+iτ (x) satisfies a recur-

rence
yµ+1(x) + bµ(x)yµ(x) + aµ(x)yµ−1(x) = 0, (3.9)

with
bµ ∼ bµ−1, aµ ∼ aµ−2,

b = −2x/
√
x2 − 1, a = 1.

(3.10)

The application of Perron’s theorem shows that the recurrence admits a
minimal solution as µ → +∞. The recurrence admits solutions with the
asymptotic behavior

fµ+1

fµ
∼ t1µ

−1,
gm+1

gm
∼ t2µ

−1, (3.11)

with

t1 =

√

x− 1

x+ 1
, t2 =

√

x+ 1

x− 1
. (3.12)

The minimal solution corresponds to t1 and, using again the known behavior
of the (0 0+) Gauss recursion, we conclude that yµ(x) is minimal when
x > 1.

In the opposite direction of recursion, the situation is opposite and
Pµ
−1/2+iτ (x) is dominant when x > 0 (minimal when x ∈ (−1, 0)) as µ→ ∞;

there is one important exception to this: when µ = m ∈ N. The fact that
Pµ
−1/2+iτ (x), µ /∈ N, is dominant when x > 0 as µ → ∞ (minimal when

x < 0) can be checked again using (2.1), except when µ = m ∈ N. On the
other hand, using (2.4) we see at once that Pm

−1/2+iτ (x) is minimal when

x > 0 (dominant when x ∈ (−1, 0)) as m grows with positive integer m.

3.1 Continued fraction

When x > 0 (and backward recursion is stable) one needs two starting values
with large |m| for beginning the computation with the recurrence relation.
Both values could be computed by means of the asymptotic expansions to
be presented later, but in some cases, particularly near x = 1, it may be
more efficient to compute the second value using a continued fraction.

Let us, for example, consider the casem ∈ N. Then, considering the ratio
Hm = Pm

−1/2+iτ (x)/P
m−1
−1/2+iτ (x), which satisfies (see the recurrence relation

(3.1))

Hm =
(m− 1/2)2 + τ2

2mx
√

1 − x2
+Hm+1

, (3.13)
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and the continued fraction that follows from this ratio, we see that we can
compute Pm−1

−1/2+iτ (x) once Pm
−1/2+iτ (x) is known and Hm is computed nu-

merically (see [6, chapter 6] for methods of computation).
The error in the computation of the continued fraction when N approx-

imants are considered, is approximately given by (see [6, chapter 4])

ǫk ≃
∣

∣

∣

∣

gM/fM
gM+k/fM+k

∣

∣

∣

∣

, (3.14)

where gl and fl are a dominant and the minimal solution of the three-term
recurrence relation, respectively.

Using Perron’s estimates for the ratios of functions, a rough estimate for
the error is given by

ǫN ∼
(

1 − x

1 + x

)N

. (3.15)

From (3.15), the number of approximants N which are needed in the
computation of the continued fraction in order to obtain an accuracy ǫ, can
be estimated as

N ∼ log(ǫ)/ log

∣

∣

∣

∣

1 − x

1 + x

∣

∣

∣

∣

. (3.16)

A test for this expression is shown in Fig. 1.
Similarly as before, when x > 1 an analogous representation for Hm is

obtained from (3.8) and the number of approximants N which are needed in
the computation of the continued fraction in order to obtain an accuracy ǫ,
is again given by (3.16). Fig. 2 shows a comparison of this estimation with
the actual values of N needed.

Notice that the continued fractions (both for x > 1 and 0 < x < 1)
converge very fast near x = 1, and that, therefore, around this value the
continued fraction is an interesting method of computation.

As can be seen in Fig. 2, for large τ the error estimations don’t work so
well, not surprisingly because we are assuming that m is large with respect
to the rest of parameters. Better estimations could be obtained from the
uniform asymptotic expansions to be introduced in the next sections. In any
case, the main conclusion is the same: that around x = 1 this is an effective
method and that it can be used for computing one of the two starting values
for starting recursions.
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Figure 1: Test for (3.16). Comparison between the estimate for the number
of approximants (crosses) of the continued fraction representation for (3.13)
and the actual number of approximants (circles and diamonds), as a function
of x (starting from x = 0.4) and for m = 50 and τ = 1.1, 50 (circles and
diamonds, respectively).
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Figure 2: Test for (3.16) for x > 1. Comparison between the estimate for the
number of approximants (crosses) of the continued fraction representation
for (3.13) and the actual number of approximants (circles and diamonds),
as a function of x and for m = 50 and τ = 1.1 (circles) and τ = 50.1
(diamonds).
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4 Uniform asymptotic expansion for x ∈ [−1, 1]

In this section we describe a powerful asymptotic expansion for P−µ
−1/2+iτ (x)

that holds for large positive values of µ, and which is uniformly valid with
respect to τ ≥ 0 and x ∈ [−1, 1]. In §8, Appendix A, we give further details
of this expansion, which reads

P−µ

− 1
2
+iτ

(x) ∼
√

p

xµ

Γ(1
2 + µ) (1 − x2)µ/2e−µφ(t0)

Γ(µ+ 1
2 − iτ)Γ(µ+ 1

2 + iτ)

∞
∑

k=0

uk(β, p)

µk
. (4.1)

The quantities β, p and φ(t0) are given by

β =
τ

µ
, p =

x
√

1 + β2(1 − x2)
, (4.2)

and

φ(t0) = ln
x(p+ 1)

p(β2 + 1)
+ β arccos

x(1 − pβ2)

p(1 + β2)
. (4.3)

The first few coefficients of the expansion in (4.1) are

u0(β, p) = 1, u1(β, p) = −−β2 + 5β2p3 − 3β2p+ 3p

24(β2 + 1)
,

u2(β, p) =
1

1152(β2 + 1)2
[385β4p6 + 462β2(1 − β2)p4 − 10β4p3

+(81β4 − 522β2 + 81)p2 + 6β2(β2 − 1)p + β4 + 72β2 − 72].

(4.4)

As it is given, the asymptotic relation in (4.1) has no meaning at the
points x = ±1, because of the singularities of the conical function (and terms
at the right-hand side of (4.1)) for these values of x. By using suitable scaling
we can give representations that also hold at the endpoints (see for details
§8.1).

For x ∼ −1 the quantity φ(t0) becomes singular and should be combined
with powers of (1 + x). This gives for −1 ≤ x ≤ 0 the expansion

(

1 + x

1 − x

)µ/2

P−µ

− 1
2
+iτ

(x) ∼
√

p

xµ

Γ(1
2 + µ)e

−τ arccos x(1−pβ2)

p(1+β2)

Γ(µ+ 1
2 − iτ)Γ(µ+ 1

2 + iτ)
×

(

x(1 − p)

p(1 − x)

)µ ∞
∑

k=0

uk(β, p)

µk
.

(4.5)
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For x ∼ 1 the quantity φ(t0) remains regular, and we can write for 0 ≤ x ≤ 1:

(

1 + x

1 − x

)µ/2

P−µ

− 1
2
+iτ

(x) ∼
√

p

xµ

Γ(1
2 + µ)(1 + x)µe−µφ(t0)

Γ(µ+ 1
2 − iτ)Γ(µ+ 1

2 + iτ)
×

∞
∑

k=0

uk(β, p)

µk
,

(4.6)

When µ is an integer (µ = m) the product of the complex gamma func-
tions in (4.1) , (4.5) and (4.6) can be written as

Γ(m+ 1
2
− iτ)Γ(m+ 1

2
+ iτ) =

π

cosh(πτ)

m
∏

n=1

(

(m− n+ 1
2
)2 + τ2

)

. (4.7)

4.1 Numerical tests of the expansion for x ∈ [−1, 1]

In order to test the range of validity of the expansion in (4.1), we first com-
pare it with the values obtained from Eq. (2.1) by using Maple, computing
the function with as many digits as needed (more digits as τ becomes larger).

Fig. 3 shows, as a function of x, the minimum value of m for which
the use of (4.1) allows to get single precision (10−8) in the computation of
P−m
−1/2+iτ (x). We have used expansion (4.1) with terms 0 ≤ k ≤ 7. Fig. 4

shows the corresponding results for double precision (10−16).
A second test, independent of Maple computations, has been considered.

It consists in testing that the values computed from asymptotics are consis-
tent with the three term recurrence relation (3.1). For this, when backward
recursion is stable (x > 0), we compute P−m−1

−1/2+iτ (x) and P−m
−1/2+iτ (x) from

asymptotics and obtain P−m+1
−1/2+iτ (x) by applying (3.1). This value is tested

against the direct computation of P−m+1
−1/2+iτ (x) from the asymptotic expan-

sion (4.1). For x < 0, we proceed similarly but in the opposite direction
of recursion (P−m−1

−1/2+iτ (x) is obtained from P−m
−1/2+iτ (x) and P−m+1

−1/2+iτ (x)).
Fig. 5 illustrates this test as a function of m.

The variation with respect to x of the accuracy of the asymptotic expan-
sion is illustrated in Fig. 6. The figure shows the relative errors obtained
by comparing the scaled forms of the expansion (4.5), (4.6) against Maple.
The values of the parameters τ and m are 10.1, 100.1 and 40, respectively.
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Figure 3: Minimum values of m for which the use of (4.1) allows to get a
precision better than 10−8 in the computation of P−m

−1/2+iτ (x).
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Figure 4: Minimum values of m for which the use of (4.1) allows to get a
precision better than 10−16 in the computation of P−m

−1/2+iτ (x).
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Figure 5: Relative errors in the computation of P−m+1
−1/2+iτ (x) obtained by

comparing (4.1) and (3.1). In this figure τ = 100.1 and x = 0.4.
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Figure 6: Relative errors in the computation of P−m+1
−1/2+iτ (x) obtained by

comparing (4.5), (4.6) against Maple. In this figure τ = 10.1, 100.1 and
m = 40.
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5 Quadrature methods for x ∈ [−1, 1]

As explained extensively in [6, Ch. 5], knowing details of saddle point con-
tours of integrals defining special functions, we can use this information for
constructing efficient quadrature methods for evaluating these integrals. We
derive an integral that can be used for all non-negative values of the param-
eters µ and τ (large or small) and for all x ∈ [−1, 1]. For example, numerical
quadrature can be used to compute starting values of the recursion when
x ∈ (−1, 0]; see §3.

We use the integral in (8.2) that is used for obtaining the asymptotic
expansion of the previous section. This integral has a saddle point at t0
given in (8.8), and we integrate along the horizontal line through t0. That
is, we write t = s+ is0, where is0 = t0, and denote the integral in (8.2) with
I. We obtain

I = e−µφ(t0)

∫ ∞

−∞

e−µψ(s) ds
√

x+ cosh(s+ s0)
, (5.1)

where φ(t0) is given in (4.3) and

ψ(s) = ln

(

1 +
2 cos(s0) sinh2(s/2)

x+ cos(s0)
+ i

sin(s0) sinh(s)

x+ cos(s0)

)

− iβs, (5.2)

where

cos(s0) =
x(1 − pβ2)

p(1 + β2)
, sin(s0) =

βx(p + 1)

p(1 + β2)
, (5.3)

and β and p are as in (4.2).
We write ψ(s) in the form ψ(s) = ψr(s) + iψi(s), where

ψr(s) = 1
2

ln

(

1 +
4(1 + β2)

1 + p
σ2 +

4(1 + β2)(1 + p2β2)

(1 + p)2
σ4

)

,

ψi(s) = arctan
β(1 + p) sinh s

1 + p+ (1 − pβ2) sinh2(s/2)
− βs,

(5.4)

where σ = sinh(1
2s). We have, as s→ 0,

ψr(s) =
1 + β2

2(1 + p)
s2 +

(1 + β2)(p− 2 + 3β2(p2 − 2)

24(1 + p)2
s4 + O(s6),

ψi(s) =
β(1 + β2)(p− 2)

6(1 + p)
s3 + O(s5).

(5.5)
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After these preparations, we obtain the desired integral representation

I = 2e−µφ(t0)

√

p(1 + β2)

x(p+ 1)

∫ ∞

0
e−(µ+ 1

2
)ψr(s) cos((µ+ 1

2
)ψi(s)) ds. (5.6)

An efficient quadrature method can be based on the trapezoidal rule. For
details we refer to [6, Ch. 5].

For x ∼ −1 we have p ∼ −1, and the representation should be modi-
fied. As explained in §4, see (4.5), the quantity φ(t0) also becomes singular,
but a suitable scaling of the conical function may take care of the factor
exp(−µφ(t0)). The factor

√
p+ 1 in (5.6) can be handled, for example, by

introducing the new variable of integration w = sinh(s/2)/
√

1 + p. Then

ds

dw
= 2

√

1 + p

1 + (1 + p)w2
, (5.7)

and in the new integral we can use x ∼ −1 without any problem. The
new integral is not fast convergent, but acceleration methods can be used
as described in [6, § 5.4.2].

6 Uniform asymptotic expansion for x ≥ 1

To distinguish between the previous cases with x ∈ [−1, 1], we now write
z = x, z ≥ 1. This is the area where zeros occur, and for describing
the transition between the monotonic behavior and oscillatory behavior,
an expansion in terms of elementary functions is no longer adequate. We
have used a representation in terms of the modified Bessel function Kiτ (µζ),
which reads (for details we refer to §9, Appendix B):

P−µ

− 1
2
+iτ

(z) =
2Γ(1

2 + µ) (z2 − 1)µ/2 e−µλ

√
2π Γ(µ− ν)Γ(1 + µ+ ν)

Φ(ζ)×

[Aµ(β, ζ)Kiτ (µζ) −Bµ(β, ζ)K
′
iτ (µζ)] ,

(6.1)

where

λ =
1

2

(

ln
z2 − 1

β2 + 1
+ β arccos

1 − β2

1 + β2

)

, (6.2)

β =
τ

µ
, Φ(ζ) =

(

ζ2 − β2

1 + β2(1 − z2)

)

1
4

, (6.3)
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and the functions Aµ(β, ζ) and Bµ(β, ζ) have the expansions

Aµ(β, ζ) ∼
∞

∑

n=0

An(β, ζ)

µn
, Bµ(β, ζ) ∼

∞
∑

n=0

Bn(β, ζ)

µn
. (6.4)

For describing the parameter ζ and the coefficients of the expansions we
use two different z−intervals. Let

zc =

√

1 + β2

β
. (6.5)

6.1 The monotonic case: 1 ≤ z ≤ zc

In this case the quantity ζ ≥ β is given by the implicit equation

2
[

√

ζ2 − β2 − β arccos(β/ζ)
]

= ln
p+ 1

p− 1
− β arccos

β2p2 − 1

β2p2 + 1
, (6.6)

where p is given by

p =
z

√

1 + β2(1 − z2)
. (6.7)

For the numerical inversion of this equation, that is, computing ζ when z is
given, we refer to §6.1.1 below.

The first few coefficients An(β, ζ), Bn(β, ζ) in (6.4) are

A0(β, ζ) = 1, B0(β, ζ) = 0, A1(β, ζ) =
β2

24(1 + β2)
, (6.8)

B1(β, ζ) = −(5β2(W 3p3 − 1 − β2) + 3W 2(Wp(1 − β2) − 1 − β2)ζ

24W 4(1 + β2)
, (6.9)

where p is given in (6.7) and

W =
√

ζ2 − β2. (6.10)

Observe that the function Φ(ζ) given in (6.3) can be written as Φ(ζ) =
√

pW/z. This functions is analytic at the point ζ = β, and can be defined
across this point by changing the sign under the square roots in (6.7) and
(6.10) simultaneously.
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6.1.1 Numerical inversion of the implicit equation (6.6)

The left-hand side in (6.6) vanishes at ζ = β and is a strictly increasing
function of ζ ∈ [β,∞); the derivative with respect to ζ is 2

√

1 − β2/ζ2.
The right hand side becomes +∞ as z ↓ 1 and vanishes at z = zc; it is
strictly decreasing function of z ∈ [1, zc], the derivative with respect to z
being −2

√

1 + β2(1 − z2)/(z2−1). It follows that from (6.6) a unique value
ζ can be obtained when values of z and β are given. Conversely, we can
obtain a unique value z when values of ζ and β are given.

The derivatives are similar to those used in the Liouville transformation
in [2, Eq. (4.5)], after using in our analysis ζ =

√
η and z2 = 1 + 1/ξ.

An explicit analytical inversion of equation (6.6) is not possible, but one
can find initial approximations which guarantee convergence of Newton’s
method. We rewrite the equation as

√

γ2 − 1 − arccos(1/γ) = Ω (6.11)

γ = ζ/β, and Ω = f(p, β)/(2β) and f(p, β) is the right-hand side of Eq. (6.6).
For large γ, we expand the left hand side and get, after inverting the asymp-
totic series (see [6, Chapter 7]), the approximation

γ ∼ Ω +
π

2
− 1

2Ω
+

π

4Ω2 + O(Ω−3). (6.12)

This approximation is, of course, better as Ω is large, but can be used as
starting value for Ω ≥ 1.

For smaller values of Ω, which leads to smaller values of γ, we can expand
the left hand side of (6.11) in powers of γ− 1. With the leading term of the
expansion, we get

γ ∼ 1 +

(

3Ω

2
√

2

)2/3

. (6.13)

This approximation gives a convenient starting value for Newton’s method
when 0 ≤ Ω ≤ 1.

6.2 The oscillatory case: z ≥ zc

In this case the quantity ζ ∈ [0, β] is given by the implicit equation

2
[

√

β2 − ζ2 − βarccosh(β/ζ)
]

= 2arccot q − β ln
βq + 1

βq − 1
, (6.14)

where q is given by

q =
z

√

β2(z2 − 1) − 1
. (6.15)
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The coefficients A0(β, ζ), B0(β, ζ), A1(β, ζ) are as in (6.8), whereas the
coefficient B1(β, ζ) is given by

B1(β, ζ) = −(5β2(V 3q3 − 1 − β2) + 3V 2(V q(1 − β2) − 1 − β2)ζ

24V 4(1 + β2)
, (6.16)

where V =
√

β2 − ζ2. In fact this B1(β, ζ) is the same as the one in (6.9),
with proper interpretation of the square roots in W,p and V, q. See the
remark at the end of §6.1. The function Φ(ζ) given in (6.3) can also be
written as Φ(ζ) =

√

qV/z. More details on the relation between p and W
for z ∼ zc (that is, for small values of W ) will be given in §9.5..

6.2.1 Numerical inversion of the implicit equation (6.14)

The derivative with respect to ζ of the left-hand side of (6.14) is 2
√

β2/ζ2 − 1,
and that of the right-hand side equals −2

√

β2(z2 − 1) − 1/(z2 − 1). It fol-
lows that (6.14) defines a unique value ζ when values of z and β are given,
and conversely, we can obtain a unique value z when values of ζ and β are
given.

Again, Eq. (6.14) cannot be explicitly inverted, but accurate enough
values for the Newton method can be determined. Writing the equation as

√

γ2 − 1 − arccosh(1/γ) = Λ (6.17)

γ = ζ/β, and Λ =
g(p, β)

2β and g(p, β) is the right-hand side of Eq. (6.14) we

get, by expanding the left-hand side of the equation in powers of γ − 1 that
for values of γ close to 1 the following approximation can be used

γ ≃ 1 −
(−3Λ

2
√

2

)2/3

(6.18)

The approximation is sufficient for −0.5 ≤ Λ ≤ 0 while for Λ < −0.5
(and smaller γ), it is better to expand the left-hand side and invert the
expansion. The following approximation can then be obtained after two
resubstitutions

γ ∼ 2eΛ−1 (6.19)

6.3 Numerical test of the expansions for x > 1

Fig. 7 shows, as a function of x and for two values of τ , the relative error
in the computation of P−m

−1/2+iτ (x) by using (6.1) and Maple. We have used
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Figure 7: Relative errors in the computation of P−m+1
−1/2+iτ (x) for m = 100

and τ = 1.1, 10.1.
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expansion (6.4) with terms 0 ≤ k ≤ 3. The oscillations in the relative error
for τ = 10.1 can be explained by the loss of relative accuracy near the zeros
of the function. Indeed, conical functions oscillate for x > 1 (and have an
infinite number of zeros).

As in the case x ∈ [−1, 1], the asymptotic expansion has been also tested
by checking the three term recurrence relation (3.1). Fig. 8 shows, as a
function of x and for the same two values of τ used in Fig. 7, the relative
error in the computation of P−m+1

−1/2+iτ (x) by using (6.1) and (3.1). The results
are consistent with those of Fig. 7.

Finally, Fig. 9 shows, as a function of x, the minimum value of m for
which the use of (6.1) allows to get single precision (10−8) in the computation
of P−m

−1/2+iτ (x) for τ = 1.1, 10.1.

7 Computational scheme

We have that yµ(x) = P−µ
−1/2+iτ (x) is minimal as µ → +∞ when x > 0 and

dominant when x < 0; at x = 0 it is neither minimal nor dominant and at
x = 1 the computation through recurrence is undefined (and unnecessary).
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Figure 8: Relative errors in the computation of P−m+1
−1/2+iτ (x) by using (6.1)

and (3.1) for m = 100 and τ = 1.1, 10.1.
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Figure 9: Minimum values of m for which the use of (6.1) allows to get a
precision better than 10−8 in the computation of P−m

−1/2+iτ (x).
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Therefore, for computing P−µ
−1/2+iτ (x), x > 0, µ ≥ 0, recursion starting

from large µ and decreasing µ is possible. And for Pm
−1/2+iτ (x), m ∈ N, the

relation (2.5) can be used or, alternatively, backward recursion is possible
starting with large positive m. The starting values for these recurrences
are provided by the uniform asymptotic expansions discussed in sections 4
and 6; the values of m which can be used for starting the recursion can be
extracted from the information of the type described Figures 3, 4 and 9.

When x ∈ (−1, 0) the recurrent scheme changes and conical functions
Pµ
−1/2+iτ (x) with µ ≤ 0 or µ = m ∈ N should be computed in the direction of

increasing |µ|. Fortunately, methods for computing conical function for small
µ are already available. And this, together with backward recursion and
asymptotics for positive x, gives a complete scheme of stable computation.

For negative x and µ = m ∈ N one can start from the values P 0
−1/2+iτ (x)

and P 1
−1/2+iτ (x) (which are computed in [8]) and use the recurrence (3.1)

for computing for m > 1; analogously, one can start with two negative
values of the order of small magnitude and use (3.9) for computing values
P−µ
−1/2+iτ (x) for large µ. For computing Pm

−1/2+iτ (x) for small m, Kölbig [8]
proposed using power series in terms of Gauss functions. One possibility is
to use (2.1), which should be computed by other means close to x = −1
in order to avoid bad behavior of the Gauss series (with argument z ≃ 1).
Kölbig suggested rational approximations for the Gauss function. Another
possibility is to compute the initial values for the recurrence by means of
integral representations; see § 5. The connection formula (2.3) is also useful
for computations when µ is not an integer and x is close to −1.

In summary, the stable scheme of computation for positive integer or
negative real orders µ consists in:

1. If x > 0, compute Pµ
−1/2+iτ (x) for large values of |µ| and use recursion

in the direction of decreasing |µ|.

2. If x < 0, compute Pµ
−1/2+iτ (x) for small values of |µ| and use recursion

in the direction of increasing |m|.

8 Appendix A: Details of the uniform asymptotic
expansion for x ∈ [−1, 1]

We give the details of the asymptotic expansion (4.1). Dunster [2, p. 326]
has given an expansion for x ∈ [0, 1] by using the differential equation of
the conical functions. We derive a similar expansion for P−µ

ν (x) by using
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an integral representation, and conclude that the expansion is valid for x ∈
[−1, 1], after suitable scaling of the conical function.

Our starting point is the integral representation

P−µ
ν (x) =

√

2/π Γ(1
2 + µ) (1 − x2)µ/2

Γ(µ− ν)Γ(1 + µ+ ν)

∫ ∞

0
(x+ cosh t)−µ−

1
2 cos(τt) dt,

(8.1)
valid for x ∈ (−1, 1) and µ > −1

2 . This representation is given in [9, p. 188].
See also [10, p. 35].

The integrand is even, and we have

P−µ
ν (x) =

Γ(1
2 + µ) (1 − x2)µ/2

√
2π Γ(µ− ν)Γ(1 + µ+ ν)

∫ ∞

−∞

(x+ cosh t)−µ−
1
2 eiτt dt, (8.2)

which we write in the form

P−µ
ν (x) =

Γ(1
2 + µ) (1 − x2)µ/2

√
2π Γ(µ− ν)Γ(1 + µ+ ν)

∫ ∞

−∞

e−µφ(t) dt√
x+ cosh t

, (8.3)

where
φ(t) = ln(x+ cosh t) − iβt, β =

τ

µ
. (8.4)

The integral has a saddle point where φ′(t) = 0. That is, we have to solve
the equation

sinh t

x+ cosh t
− iβ = 0. (8.5)

By using the exponential representation of the hyperbolic functions, we ob-
tain for the solution t0 the relation

et0 =
i
√

1 + β2(1 − x2) − βx

β + i
. (8.6)

We have taken the + sign for the square root because we need the solution
that gives t0 ∼ 0 if β → 0. We write this in the form

et0 = x
1 − pβ2 + iβ(1 + p)

p(β2 + 1)
, p =

x
√

1 + β2(1 − x2)
. (8.7)

We have −1 ≤ p ≤ 1 for −1 ≤ x ≤ 1. The right-hand side of the first
equation in (8.7) has absolute value equal to unity. Hence, t0 is equal to the
phase of that complex number and we have

t0 = i arctan
β(1 + p)

1 − pβ2
= i arccos

x(1 − pβ2)

p(1 + β2)
, (8.8)
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Figure 10: Saddle point contours governed by the equation (8.10) for β =
1.25 and x = −1,−2

3 ,−1
3 , 0,

1
3 ,

2
3 , 1. The contour through the origin is for

x = −1, the highest contour is for x = 1.

1 2 30−1−2−3

π

π/2

where we assume (for the arctan) that 1−pβ2 ≥ 0, otherwise we add π to the
arctan. We prefer the notation in terms of the arccos function because the
standard definition of the arctan function does not give the phase outside
the interval [−1

2π,
1
2π].

There are more saddle points, all on the imaginary axis, but t0 is the
relevant saddle. There are also singularities on the imaginary axis, where
x+cosh t = 0, that is, at ts = i arccos(−x) (and at other place, but ts is the
relevant singularity). We have

0 < ℑt0 < ℑts, (8.9)

for all x ∈ (−1, 1) and β ≥ 0.
We can shift the path of integration in (8.3) upwards, through the saddle

at t0, and deform the path along the saddle point contour through t0 defined
by

ℑφ(t) = ℑφ(t0), (8.10)

where ℑφ(t0) = 0. See Figure 10.
The quantity φ(t0) is given in (4.3); furthermore we have

φ′′(t0) =
β2 + 1

p+ 1
. (8.11)

We transform
φ(t) − φ(t0) = 1

2
φ′′(t0)w

2, (8.12)
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and we assume that signℜ(t − t0) = sign(w) when t is on the saddle point
contour and the corresponding w on the real axis. This gives for the integral
in (8.3)

∫ ∞

−∞

e−µφ(t) dt√
x+ cosh t

= e−µφ(t0)

∫ ∞

−∞

e−
1
2
µφ′′(t0)w2

f(w) dw, (8.13)

where

f(w) =
dt

dw

1√
x+ cosh t

,
dt

dw
= φ′′(t0)

w

φ′(t)
. (8.14)

We expand

f(w) =

∞
∑

k=0

fkw
k (8.15)

and substitute this in (8.13). This gives the asymptotic expansion

∫ ∞

−∞

e−µφ(t) dt√
x+ cosh t

∼ e−µφ(t0)
∞
∑

k=0

f2kΓ(k + 1
2
)
(

1
2
µφ′′(t0)

)−k− 1
2
.

(8.16)
This can be written in the form

∫ ∞

−∞

e−µφ(t) dt√
x+ cosh t

∼
√

2πp

xµ
e−µφ(t0)

∞
∑

k=0

uk(β, p)

µk
, (8.17)

where p/x is well defined when x = 0, see (8.7), and

uk(β, p) =
2k (1

2)k

φ′′(t0)k
f2k

f0
, k = 0, 1, 2, . . . . (8.18)

Finally, by using (8.3), we obtain the expansion in (4.1) with the first coef-
ficients given in (4.4).

8.1 Interpretation of the expansion at x = ±1

The expansion in (4.1) remains valid at the endpoints x = ±1, after properly
scaling with the powers of 1 − x2. For x = −1 we obtain from (2.1)

lim
x↓−1

(1 + x)µ/2P−µ
ν (x) =

2µ/2 Γ(µ)

Γ(µ+ 1
2 − iτ)Γ(µ+ 1

2 + iτ)
, (8.19)

where we have used

2F1

(

a, b
c

; 1

)

=
Γ(c)Γ(c − a− b)

Γ(c− a)Γ(c− b)
, ℜ(c− a− b) > 0. (8.20)
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Taking the same limit in (4.1) and comparing the two results, we obtain

√
µΓ(µ)

Γ(µ+ 1
2)

∼
∞
∑

k=0

uk(β,−1)

µk
, (8.21)

where the first few coefficients are

u0(β,−1) = 1, u1(β,−1) = 1
8
, u2(β,−1) = 1

128
. (8.22)

These terms corresponds with the expansion first terms in the expansion of
the ratio of gamma functions given in [1, Eq. 6.1.47].

Next, again from (2.1),

lim
x↑1

(1 − x)−µ/2P−µ
ν (x) =

2−µ/2

Γ(1 + µ)
, (8.23)

and comparing the results of a similar limit in (4.1), we obtain

B(µ+ 1
2
− iτ, µ+ 1

2
+ iτ) ∼

√

π/µ 2−2µ(1 + β2)µe−2τ arctan β
∞

∑

k=0

uk(β, 1)

µk
,

(8.24)
where B(p, q) is the beta integral

B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
=

∫ 1

0
tp−1(1 − t)q−1 dt, ℜ p, q > 0. (8.25)

By using standard saddle point methods the expansion in (8.24) can be
obtained directly from this integral representation with p = µ + 1

2 − iτ ,

q = µ+ 1
2 + iτ .

9 Appendix B: Details of the uniform asymptotic
expansion for z ∈ [1, ∞)

We give details of the asymptotic expansion (6.1) that holds for large values
of µ, uniformly with respect to z ∈ [1,∞), and τ ≥ 0. A similar expansion
has been given by Dunster [2, p. 325]. His method is based on the differential
equation for the conical functions, and we are using an integral represen-
tation. This gives a more direct procedure for obtaining the coefficients in
(6.4). A similar approach has been used in [14, §5].
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We start with the same integral as in the previous section, see (8.3),

P−µ

− 1
2
+iτ

(z) =
Γ(1

2 + µ) (z2 − 1)µ/2

√
2π Γ(µ− ν)Γ(1 + µ+ ν)

∫ ∞

−∞

e−µφ(t) dt√
z + cosh t

, (9.1)

where
φ(t) = ln(z + cosh t) − iβt, β =

τ

µ
, ν = −1

2
+ iτ, (9.2)

First we observe that the expansion given in (4.1) remains valid for
1 ≤ z ≤ zc − δ, where δ is a small positive number, and zc is given in (6.5).
We only have to replace (1− x2)µ/2 with (z2 − 1)µ/2 and x by z, also in the
quantity p defined in (8.7). The equation for the saddle points

φ′(t) =
sinh t

z + cosh t
− iβ = 0 (9.3)

has two coalescing solutions when 1 + β2(1 − z2) = 0, that is, when z = zc,
which also become important in §4, when we would have considered x > 1.
The value zc becomes large as β = τ/µ becomes small. So, when τ ≪ µ we
can still use the expansion (4.1) for a large z−interval, but the expansion
becomes invalid when z approaches zc.

9.1 The saddle points

As remarked above, when we repeat the saddle point analysis of §4, we
observe that equation (9.3) with z ≥ 1 has two saddle points t± that coincide
when z = zc, where zc is given in (6.5). In this section we allow z ∼ zc,
however in the analysis we consider two cases: 1 ≤ z ≤ zc and zc ≤ z.

9.1.1 The monotonic case: 1 ≤ z ≤ zc

We have for the two saddle points the relations

et+ = z
1 − pβ2 + iβ(1 + p)

p(β2 + 1)
, et− = z

1 + pβ2 + iβ(1 − p)

−p(β2 + 1)
, (9.4)

where p is given in (6.7).
Again the right-hand sides have modulus equal to unity, and we obtain

t+ = i arccos
z(1 − pβ2)

p(1 + β2)
, t− = i arccos

−z(1 + pβ2)

p(1 + β2)
. (9.5)

For β = 0 we have t+ = 0 and t− = iπ. For z = 1 we have t+ = i arccos(1−
β2)/(1 + β2) and again t− = iπ. This value of t− follows correctly from the
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Figure 11: Saddle point contours through the saddle points given in (9.5)
for β = 3

4 and z = 4
3 .

−5 5

π

0

+t

−  t

second equation in (9.4), but it is in fact not a correct saddle point. Namely,
for z = 1 equation (9.3) becomes tanh 1

2t = iβ, with solution

t+ = 2i arctan β = i arctan
2β

1 − β2
= i arccos

(1 − β2)

(1 + β2)
, (9.6)

but the solution t− = iπ is not obtained now. In fact, the saddle point t−
vanishes as z ↓ 1.

In Figure 11 we show the saddle point contours for β = 3
4 . For this value

of β the saddle points coalesce when z equals zc = 5
3 . We take z = 4

3 .

9.1.2 The oscillatory case: zc ≤ z

We use the relations for the saddle point in (9.4) replacing p with −ip = q,
where q is given in (6.15), and obtain

et± = z
(qβ ± 1)(i − β)

q(β2 + 1)
= z

qβ ± 1

q
√

β2 + 1
ei(π−arctan(1/β)), (9.7)

where we can replace π − arctan(1/β) with arccos(−β/
√

1 + β2), and we
obtain for the two saddle points

t± = ln
z(qβ ± 1)

q
√

β2 + 1
+ i arccos

−β
√

1 + β2
, (9.8)

We see that the saddle points have the same imaginary parts. We have

t+ + t− = 2i arccos
−β

√

1 + β2
. (9.9)
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When z → ∞, we have

t± ∼ ± ln
2zβ

√

1 + β2
+ i arccos

−β
√

1 + β2
, (9.10)

9.2 Integral representation for Kia(x)

The modified Bessel function Kiτ (µζ) that is used in [2, p. 325] (with a
slightly different notation) has the integral representation

Kiτ (µζ) = 1
2

∫ ∞

−∞

e−µψ(w) dw, ψ(w) = ζ coshw − iβw, (9.11)

where β = τ/µ. We assume that ζ > 0 and τ ≥ 0; µ is again a large positive
parameter.The equation for the saddle points reads ζ sinhw = iβ. When
β ≤ ζ we have the saddle points

w+ = i arcsin
β

ζ
, w− = iπ − i arcsin

β

ζ
. (9.12)

When β ≥ ζ, we have

w+ = 1
2
πi+ arccosh

β

ζ
, w− = 1

2
πi− arccosh

β

ζ
. (9.13)

There are more saddle points, but the given w± are relevant in our analysis.
We see that for β/ζ ≤ 1 the saddle points w± lie on the imaginary axis

and when β/ζ ≥ 1 the become complex, and lie on the horizontal line with
ℑw± = 1

2π.
Comparing the location of the saddle points w± for all ratios β/ζ with

that of the saddle points t± for all ratios zβ/
√

1 + β2 we observe that the
pattern for the saddle points is quite similar in both cases. In both cases
saddle points coalesce, and to obtain an asymptotic expansion that is valid
for large µ when t+ ∼ t− or w+ ∼ w−, Airy functions can be used . See
[16] for more information on this topic from uniform asymptotic analysis for
integrals, and for examples. See [4, 5] for using Airy-type expansions in nu-
merical algorithms for the modified Bessel functions of pure imaginary order,
and [6] for an extensive treatment of this type of expansions for computing
several types of special functions.

In the present case we transform the integral (9.1) into an integral that
is similar to that in (9.11), but with an extra function in the integrand. In
this way we cover the case of coalescing saddle points, but also the large
scale pattern of the saddle point behavior.
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9.3 The transformation and the expansion

To obtain a representation of the conical P−function in terms of the modi-
fied Bessel function Kiτ (µζ) we use the following transformation of the t−
variable in (9.1) to the w−variable in (9.11) by writing

φ(t) = ψ(w) + λ, (9.14)

where λ does not depend on t or w and should be determined, together with
ζ in ψ(w). This gives

P−µ

− 1
2
+iτ

(z) =
Γ(1

2 + µ) (z2 − 1)µ/2 e−µλ

√
2π Γ(µ− ν)Γ(1 + µ+ ν)

∫ ∞

−∞

e−µψ(w)f(w) dw, (9.15)

where

f(w) =
dt

dw

1√
z + cosh t

. (9.16)

When we replace f(w) in (9.15) with a constant the integral becomes the
modified Bessel function given in (9.11). An asymptotic expansion can be
obtained by using integration by parts. We put in the first step

f0(w) = A0(β, ζ) +B0(β, ζ) coshw + ψ′(w)g0(w), f0(w) = f(w), (9.17)

where A0(β, ζ) and B0(β, ζ) follow from substituting w = w+ and w = w−.
That is,

A0(β, ζ) =
f0(w−) coshw+ − f0(w+) coshw−

coshw+ − coshw−

,

B0(β, ζ) =
f0(w+) − f0(w−)

coshw+ − coshw−

.

(9.18)

We denote the integral in (9.15) by J and replace f(w) by the right-hand
side of (9.17). This gives, by (9.11) and using integration by parts,

J = 2A0(β, ζ)Kiτ (µζ)−2B0(β, ζ)K
′
iτ (µζ)+

1

µ

∫ ∞

−∞

e−µψ(w)f1(w) dw, (9.19)

where f1(w) = g′0(w). This procedure can be continued, and we can obtain
the representation (6.1), where the coefficients An(β, ζ) and Bn(β, ζ) of (6.4)
follow from

fn(w) = An(β, ζ) +Bn(β, ζ) coshw + ψ′(w)gn(w), n = 0, 1, 2, . . . , (9.20)
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that is, from

An(β, ζ) =
fn(w−) coshw+ − fn(w+) coshw−

coshw+ − coshw−

,

Bn(β, ζ) =
fn(w+) − fn(w−)

coshw+ − coshw−

.

(9.21)

The functions fn(w) follow from fn+1(w) = g′n(w), n ≥ 0.

9.4 Determination of λ and ζ

To determine λ and ζ we prescribe for the mapping in (9.14) that the saddle
points in the t−plane should correspond with those in the w−plane. That
is,

φ(t+) = ψ(w+) + λ, φ(t−) = ψ(w−) + λ. (9.22)

This gives

ζ(coshw+ − coshw−) − iβ(w+ − w−) = φ(t+) − φ(t−), (9.23)

where w± also depend on ζ, see (9.12) and (9.13). When ζ is determined
one of the equations in (9.22) can be used to determine λ. Because we have
two different representations of the saddle points in (9.12) and (9.13) (and
similar in (9.5) and (9.8), we obtain two different representations for ζ.

9.4.1 The monotonic case: 1 ≤ z ≤ zc, β ≤ ζ

In this case we have

ζ coshw+ =
√

ζ2 − β2, ζ coshw− = −
√

ζ2 − β2, (9.24)

and the left-hand side of (9.23) can be written as

2
[

√

ζ2 − β2 − β arccos(β/ζ)
]

. (9.25)

For the right-hand side we use (9.2) and (9.5). We have

z + cosh t+ =
z(p + 1)

p(1 + β2)
, z + cosh t− =

z(p − 1)

p(1 + β2)
, (9.26)

where p is given in (6.7). Hence

φ(t+) − φ(t−) = ln
p+ 1

p− 1
− β arccos

β2p2 − 1

β2p2 + 1
. (9.27)
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Combining the two sides, we have the equation (6.6).
Next we determine λ from (9.22). Either equation can be used, but it

is better to add the equations, and exploiting the symmetry. We easily find
the value given in (6.2).

9.4.2 The oscillatory case: zc ≤ z, ζ ≤ β

Using (9.13) we obtain for the left-hand side of (9.23)

2i
[

√

β2 − ζ2 − βarccosh(β/ζ)
]

. (9.28)

For the right-hand side we solve (9.3) . We have

z + cosh t+ =
z + i

√

β2(z2 − 1) − 1

β2 + 1
=

√

z2 − 1

β2 + 1
ei arccot q,

z + cosh t− =
z − i

√

β2(z2 − 1) − 1

β2 + 1
=

√

z2 − 1

β2 + 1
e−i arccot q,

(9.29)

where q is given in (6.15). This gives for the right-hand side we obtain, using
(9.8)

φ(t+) − φ(t−) = 2i arccot q − iβ ln
βq + 1

βq − 1
. (9.30)

Combining the two sides, we obtain (6.14).

9.5 Representation of the coefficients for ζ ≈ β

The function Φ(ζ) given in (6.3) is analytic for all ζ ≥ 0, in particular at
ζ = β (and for complex values). We give expansions that can be used for
representing Φ(ζ) and the coefficients of the asymptotic expansions in (6.4).

From (6.6) we can obtain several expansions. First we mention

z = zc +
∞
∑

k=1

zk(ζ − β)k, (9.31)

where the first two coefficients are

z1 =
−1

β2(1 + β2)1/6
, z2 =

7 + 8β2 + 3(1 + β2)2/3

10β3(1 + β2)5/6
. (9.32)
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We can use the expansion in (6.3) and obtain

Φ4(ζ) =
β2

(1 + β2)1/3
+

2β(3 + 2β2 + 2(1 + β2)2/3)

5(1 + β2)
(ζ − β) + O

(

(ζ − β)2
)

.

(9.33)
For representing the coefficients An(β, ζ), Bn(β, ζ) of (6.4) it is conve-

nient to expand 1/p in terms of powers of W . See (6.9). We write

1

p
=

∞
∑

k=1

pkW
k (9.34)

and obtain, again from (6.6), p2 = p4 = . . . = 0. Let

γ =
1

(1 + β2)1/3
. (9.35)

Then the first few odd coefficients are

p1 = γ, p3 = −γ
3(2γ2 + 2γ + 1)

5(γ2 + γ + 1)
,

p5 = −γ
5(37γ4 + 74γ3 + 69γ2 + 27γ + 3)

175(γ2 + γ + 1)2
.

(9.36)

For the coefficient B1(β, ζ) given in (6.9) we have

B1(β, ζ) = −γζ(9γ
5 + 9γ4 + 9γ3 + 4γ + 4)

280(γ2 + γ + 1)
+

γ3ζ(98γ7 + 196γ6 + 213γ5 + 83γ4 − 47γ3 − 96γ2 − 76γ − 56)

12600(γ2 + γ + 1)2
W 2+

O(W 4).
(9.37)

Observe that we have not expanded the quantity ζ that appears in all terms
as a linear factor. This expansion holds for 1 ≤ z ≤ zc, that is, ζ ≥ β.
When z ≥ zc we have the same expansion with W 2 replaced with −W 2,
throughout.
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